Just an observation: x^2+y^2=25 is the equation of a circle with the centre at the origin.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:
x^2+y^2=25 ...............................(1)
y+5=1/2 x^2 ................................(2)
color(blue)("Solving for "y)
Rewrite (1) as: x^2=25-y^2" " ...........(1_a)
Rewrite (2) as: x^2=2y+10" " ...........(2_a)
Equate (1_a)" to "(2_a)" through "x^2 This is the equivalent of substituting for x^2
25-y^2=2y+10
This is the same as
y^2+2y-15=0
(y+5)(y-3)=0
" "color(blue)(=> y= -5" or " +3) .........................(3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Solving for "x)
Substituting into equation (2_a). The y is not squared!
color(brown)("condition 1 "y=-5)
x^2=2y+10" " -> " "x^2=2(-5)+10
" "color(green)(x^2=0" " =>" " x=0)
'...........................................
color(brown)("condition 2 "y=+3)
x^2=2(3)+10 = 16
" "color(green)(x=+-4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Putting it all together")
The point of intersection are:
color(blue)((x,y)->( -4,3)" ; "(+4,3)" ; "(0,-5))