The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(-1) for color(red)(a)
color(blue)(1) for color(blue)(b)
color(green)(1) for color(green)(c) gives:
x = (-color(blue)(1) +- sqrt(color(blue)(1)^2 - (4 * color(red)(-1) * color(green)(1))))/(2 * color(red)(-1))
x = (-color(blue)(1) +- sqrt(1 - (-4)))/(-2)
x = (-color(blue)(1) +- sqrt(1 + 4))/(-2)
x = (-color(blue)(1) +- sqrt(5))/(-2)
x = (color(blue)(1) +- sqrt(5))/(2)
Or
1/2 +- sqrt(5)/2