How do you solve -x^2+x+1=0 using the quadratic formula?

1 Answer
Aug 24, 2017

See a solution process below:

Explanation:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(-1) for color(red)(a)

color(blue)(1) for color(blue)(b)

color(green)(1) for color(green)(c) gives:

x = (-color(blue)(1) +- sqrt(color(blue)(1)^2 - (4 * color(red)(-1) * color(green)(1))))/(2 * color(red)(-1))

x = (-color(blue)(1) +- sqrt(1 - (-4)))/(-2)

x = (-color(blue)(1) +- sqrt(1 + 4))/(-2)

x = (-color(blue)(1) +- sqrt(5))/(-2)

x = (color(blue)(1) +- sqrt(5))/(2)

Or

1/2 +- sqrt(5)/2