How do you solve x^2+8x+15=0 using the quadratic formula?

2 Answers
Mar 20, 2018

See a solution process below:

Explanation:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(1) for color(red)(a)

color(blue)(8) for color(blue)(b)

color(green)(15) for color(green)(c) gives:

x = (-color(blue)(8) +- sqrt(color(blue)(8)^2 - (4 * color(red)(1) * color(green)(15))))/(2 * color(red)(1))

x = (-color(blue)(8) +- sqrt(64 - 60))/2

x = (-color(blue)(8) - sqrt(4))/2 and x = (-color(blue)(8) + sqrt(4))/2

x = (-color(blue)(8) - 2)/2 and x = (-color(blue)(8) + 2)/2

x = (-10)/2 and x = (-6)/2

x = -5 and x = -3

The Solution Set Is: x = {-5, -3}

Mar 20, 2018

x=-5 or x=-3

Explanation:

Quadratic formula gives the solution of a quadratic equation. For a quaddratic equation ax^2+bx+c=0, the roots given by quadratic formula are (-b+-sqrt(b^2-4ac))/(2a).

Hence for x^2+8x+15=0, we have a=1, b-8 and c=15 and hence solution is

(-8+-sqrt(8^2-4*1*15))/(2*1)

= (-8+-sqrt(64-60))/2

= (-8+-sqrt4)/2

= (-8+-2)/2

i.e. either x=-5 or x=-3