The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(1) for color(red)(a)
color(blue)(8) for color(blue)(b)
color(green)(15) for color(green)(c) gives:
x = (-color(blue)(8) +- sqrt(color(blue)(8)^2 - (4 * color(red)(1) * color(green)(15))))/(2 * color(red)(1))
x = (-color(blue)(8) +- sqrt(64 - 60))/2
x = (-color(blue)(8) - sqrt(4))/2 and x = (-color(blue)(8) + sqrt(4))/2
x = (-color(blue)(8) - 2)/2 and x = (-color(blue)(8) + 2)/2
x = (-10)/2 and x = (-6)/2
x = -5 and x = -3
The Solution Set Is: x = {-5, -3}