How do you solve x^2 + 8x + 13 = 0x2+8x+13=0?

1 Answer
Feb 25, 2016

x=-4+sqrt 3, -4-sqrt 3x=4+3,43

Explanation:

x^2+8x+13=0x2+8x+13=0 is a quadratic equation in standard form ax^2+bx+13ax2+bx+13, where a=1, b=8, c=13a=1,b=8,c=13.

The quadratic formula can be used to solve the equation.

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Substitute the known values into the formula and solve for xx.

x=(-8+-sqrt(8^2-(4*1*13)))/(2*1)x=8±82(4113)21

Simplify.

x=(-8+-sqrt(64-52))/2x=8±64522

Simplify.

x=(-8+-sqrt 12)/2x=8±122

Factor sqrt 1212.

sqrt(2xx2xx3)=2×2×3=

sqrt(2^2xx3)=22×3=

2sqrt 323

x=(-8+-2sqrt3)/2x=8±232

Simplify.

x=(cancel(-8)^-4+-cancel(2)^1sqrt 3)/cancel(2)^1

Simplify.

x=-4+-sqrt 3

Solutions for x.

x=-4+sqrt 3

x=-4-sqrt 3