How do you solve #x^2 + 7x - 3 = 0#?

1 Answer
Sep 11, 2015

The solutions are
#color(blue)(x=(-7+sqrt(61))/2#

#color(blue)(x=(-7-sqrt(61))/2#

Explanation:

The equation #x^2+7x-3=0# is of the form #color(blue)(ax^2+bx+c=0# where:
#a=1, b=7, c=-3#

The Discriminant is given by:
#Delta=b^2-4*a*c#

# = (7)^2-(4*1* (-3))#

# = 49 +12= 61#

The solutions are found using the formula
#x=(-b+-sqrtDelta)/(2*a)#

#x = (-7+-sqrt(61))/(2*1) = (-7+-sqrt(61))/2#

The solutions are
#color(blue)(x=(-7+sqrt(61))/2#

#color(blue)(x=(-7-sqrt(61))/2#