How do you solve x^2+5x-6=0 using the quadratic formula?

3 Answers
Jul 10, 2018

x_1=1 or x_2=-6

Explanation:

Using the formula

x_(1,2)=-p/2pmsqrt(p^2/4-q)
p=5,q=-6

we get

x_(1,2)=-5/2pmsqrt(25/4+6)

25/4+6=25/4+24/4=49/4

so

x_(1,2)-5/2pmsqrt(49/4)
so we get

x_1=1

x_2=-6

x=-6, 1

Explanation:

Given quadratic equation: x^2+5x-6=0

Comparing the above equation with the standard form of quadratic equation: ax^2+bx+c=0 we get

a=1, b=5 & c=-6

The roots of quadratic equation are given as follows

x_{1, 2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

=\frac{-5\pm\sqrt{5^2-4(1)(-6)}}{2(1)}

=\frac{-5\pm7}{2}

=-6, 1

Jul 10, 2018

x=1,-6

Explanation:

x^2+5x-6=0 is a quadratic equation in standard form:

y=ax^2+bx+c,

where:

a=1, b=5, c=-6

Quadratic formula

Substitute 0 for y and solve for x.

x=(-b+-sqrt(b^2-4ac))/(2*a)

Plug in the known values.

x=(-5+-sqrt(49))/2

Simplify.

x=(-5+-7)/2

x=(-5+7)/2, (-5-7)/2

Simplify.

x=2/2, x=-12/2

Simplify.

x=1,-6