How do you solve x^2+5x-4=0 using the quadratic formula?

1 Answer
Mar 30, 2016

x= color(blue)( (-5+sqrt(41))/2

x= color(blue)( (-5-sqrt(41))/2

Explanation:

x^2 + 5x - 4 = 0

a=1, b=5, c=-4

The Discriminant is given by:

Delta=b^2-4*a*c

= (5)^2-(4*1 * (-4))

= 25 + 16 = 41

The solutions are found using the formula:

x=(-b+-sqrtDelta)/(2*a)

x = ((-5)+-sqrt(41))/(2*1) = (-5+-sqrt(41))/2

x= color(blue)( (-5+sqrt(41))/2

x= color(blue)( (-5-sqrt(41))/2