How do you solve x^2 - 5x = 1 using the quadratic formula?

1 Answer
Dec 21, 2015

x=(5+sqrt 29)/2

x=(5-sqrt29)/2

Explanation:

x^2-5x=1

Subtract 1 from both sides.

x^2-5x-1=0 is a quadratic equation in standard form, ax^2+bx+c, where a=1, b=-5, and c=-1.

Quadratic Formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Substitute the values for a, b, and c into the formula.

x=(-(-5)+-sqrt(-5^2-4*1*-1))/(2*1)

Simplify.

x=(5+-sqrt(25-(-4)))/2

x=(5+-sqrt(25+4))/2

x=(5+-sqrt29)/2

Solve for x

x=(5+sqrt 29)/2

x=(5-sqrt29)/2