The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
For: 1x^2 + 4x + 2 = 0
We can substitute:
color(red)(1) for color(red)(a)
color(blue)(4) for color(blue)(b)
color(green)(2) for color(green)(c) giving:
x = (-color(blue)(4) +- sqrt(color(blue)(4)^2 - (4 xx color(red)(1) xx color(green)(2))))/(2 * color(red)(1))
x = (-color(blue)(4) +- sqrt(16 - 8))/2
x = (-color(blue)(4) - sqrt(8))/2 and x = (-color(blue)(4) + sqrt(8))/2
x = -color(blue)(4)/2 - sqrt(8)/2 and x = -color(blue)(4)/2 + sqrt(8)/2
x = -2 - sqrt(8)/2 and x = -2 + sqrt(8)/2
x = -2 - sqrt(4 xx 2)/2 and x = -2 + sqrt(4 xx 2)/2
x = -2 - (sqrt(4)sqrt(2))/2 and x = -2 + (sqrt(4)sqrt(2))/2
x = -2 - (2sqrt(2))/2 and x = -2 + (2sqrt(2))/2
x = -2 - sqrt(2) and x = -2 + sqrt(2)