The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(1) for color(red)(a)
color(blue)(-4) for color(blue)(b)
color(green)(1) for color(green)(c) gives:
x = (-color(blue)((-4)) +- sqrt(color(blue)((-4))^2 - (4 * color(red)(1) * color(green)(1))))/(2 * color(red)(1))
x = (color(blue)(4) +- sqrt(color(blue)(16) - 4))/2
x = (color(blue)(4) +- sqrt(12))/2
x = (color(blue)(4) - sqrt(4 * 3))/2 and x = (color(blue)(4) + sqrt(4 * 3))/2
x = (color(blue)(4) - sqrt(4)sqrt(3))/2 and x = (color(blue)(4) + sqrt(4)sqrt(3))/2
x = (color(blue)(4) - 2sqrt(3))/2 and x = (color(blue)(4) + 2sqrt(3))/2
x = color(blue)(4)/2 - (2sqrt(3))/2 and x = color(blue)(4)/2 + (2sqrt(3))/2
x = 2 - sqrt(3) and x = 2 + sqrt(3)