How do you solve x^2 – 3x = 7x – 2 using the quadratic formula?

1 Answer
Jul 17, 2015

x=5+sqrt(23), x=5-sqrt(23)

Explanation:

x^2-3x=7x-2

Get all of the terms on the left side.

x^2-3x-7x+2=0 =

x^2-10x+2=0

The equation is now in the form of a quadratic equation ax^2+bx+c, where a=1, b=-10, and c=2.

Quadratic Formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Substitute the values for a, b, and c into the formula.

x=(-(-10)+-sqrt(-10^2-4*1*2))/(2*1) =

x=(10+-sqrt(100-8))/(2) =

x=(10+-sqrt(92))/2

Simplify sqrt(92).

sqrt(92)=sqrt(2xx2xx23) =

sqrt(92)=2sqrt23

Substitute 2sqrt(23) for sqrt(92).

x=(10+-2sqrt(23))/2

Simplify.

x=5+-sqrt(23)

Solve for x.

x=5+sqrt(23)

x=5-sqrt(23)