How do you solve #x^2+15x+56=0#?
1 Answer
Mar 27, 2016
#x = -7# or#x = -8#
Explanation:
Find a pair of factors of
The pair
Hence:
#0 = x^2+15x+56 = (x+7)(x+8)#
So:
#x = -7# or#x = -8#
Alternative method
I will use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
First multiply the whole equation by
#0 = 4x^2+60x+224#
#=(2x+15)^2-225+224#
#=(2x+15)^2-1^2#
#=((2x+15)-1)((2x+15)+1)#
#=(2x+14)(2x+16)#
#=(2(x+7))(2(x+8))#
#=4(x+7)(x+8)#
Hence