How do you solve using the quadratic formula 5x^2-8x-14=0?

1 Answer
May 10, 2015

5x^2-8x-14=0 is of the form ax^2+bx+c=0, with a=5, b = -8 and c = -14.

The quadratic formula gives x = (-b +-sqrt(b^2-4ac))/(2a).

So substituting our values for a, b and c, we get:

x = (8+-sqrt(8^2-4*5*(-14)))/(2*5)

= (8+-sqrt(4*16+4*70))/10

=(8+-sqrt(4*86))/10

=(8+-sqrt(4)*sqrt(86))/10

=(8+-2*sqrt(86))/10

=(4+-sqrt(86))/5

=4/5+-sqrt(86)/5