How do you solve these logarithmic equations?

4+log_(9)(3x-7)=64+log9(3x7)=6
log_(2)(2x)+log_(2)x=5log2(2x)+log2x=5
3log_(5)x-log_(5)(5x)=3-log_(5)253log5xlog5(5x)=3log525

2 Answers
Nov 25, 2016

See below.

Explanation:

Before the logarithm application, the equations read

9^4(3x-7)=9^694(3x7)=96
(2x)x=2^5(2x)x=25
x^3/(5x)=5^3/25x35x=5325

after that we have

3x-7=9^2->x=(9^2+7)/33x7=92x=92+73
x^2=2^4->x=pm2^2x2=24x=±22
x^2=5^2->x=pm 5x2=52x=±5

Nov 25, 2016

4+log_9(3x-7)=64+log9(3x7)=6

log_9(3x-7)=2log9(3x7)=2

3x-7=813x7=81

3x=893x=89

x=89/3x=893

log_2(2x)+log_2(x)=5log2(2x)+log2(x)=5

log_2(2x^2)=5log2(2x2)=5

2x^2=2^5=322x2=25=32

x^2=16x2=16

x=+-4x=±4

3log_(5)x-log_(5)(5x)=3-log_(5)253log5xlog5(5x)=3log525

log_5x^3-log_5(5x)=3-2=1log5x3log5(5x)=32=1

log_5(x^3/(5x))=log_5(x^2/5)=1log5(x35x)=log5(x25)=1

x^2/5=5x25=5

x^2=25x2=25

x=+-5x=±5