How do you solve the system x^2+y^2-3x=8x2+y23x=8 and 2x^2-y^2=102x2y2=10?

1 Answer
Aug 24, 2016

(1) :In RR^2, the Solns. are (x,y)=(3,+-2sqrt2).

(2) : In CC^2, the Solns. are (x,y)=(3,+-2sqrt2),(-2, +-isqrt2).

Explanation:

Adding the given eqns., we get, 3x^2-3x=18, or, x^2-x-6=0.

:. ul(x^2-3x)+ul(2x-6)=0.

:. x(x-3)+2(x-3)=0.

:. (x-3)(x+2)=0.

:. x=3, or, x=-2.

From the second eqn., since, y^2=2x^2-10,

x=3 rArr y^2=8 rArr y=+-2sqrt2, and,

x=-2 rArr y^2=-2, "which is not possible in" RR.

These roots satisfy the given system of eqns.

Hence, the Solns. in RR^2are (x,y)=(3,+-2sqrt2).

Note :-

In CC, y^2=-2 rArr y=+-isqrt2.

Therefore, in CC^2, the Solns. are,

(x,y)=(3,+-2sqrt2), (-2, +-isqrt2).

Enjoy Maths.!