How do you solve the system x^2+y^2=16 and x^2-5y=5?
1 Answer
Jul 29, 2016
(+-sqrt(-15/2+(5sqrt(69))/2), -5/2+sqrt(69)/2)
(+-(sqrt(15/2+(5sqrt(69))/2))i, -5/2-sqrt(69)/2)
Explanation:
Subtract the second equation from the first and rearrange to get:
y^2+5y-11 = 0
Use the quadratic formula to find:
y = (-5+-sqrt(5^2-4(1)(-11)))/2
=(-5+-sqrt(25+44))/2
=(-5+-sqrt(69))/2
Then from the second equation, we have:
x^2=5+5y = 5+5((-5+-sqrt(69))/2) = -15/2+-(5sqrt(69))/2
Hence:
x = +-sqrt(-15/2+-(5sqrt(69))/2)
Note that
So we find
So the solutions are:
(+-(sqrt(-15/2+(5sqrt(69))/2)), -5/2+sqrt(69)/2)
(+-(sqrt(15/2+(5sqrt(69))/2))i, -5/2-sqrt(69)/2)