How do you solve the system x^2+y^2=16 and x^2-5y=5?

1 Answer
Jul 29, 2016

(+-sqrt(-15/2+(5sqrt(69))/2), -5/2+sqrt(69)/2)

(+-(sqrt(15/2+(5sqrt(69))/2))i, -5/2-sqrt(69)/2)

Explanation:

Subtract the second equation from the first and rearrange to get:

y^2+5y-11 = 0

Use the quadratic formula to find:

y = (-5+-sqrt(5^2-4(1)(-11)))/2

=(-5+-sqrt(25+44))/2

=(-5+-sqrt(69))/2

Then from the second equation, we have:

x^2=5+5y = 5+5((-5+-sqrt(69))/2) = -15/2+-(5sqrt(69))/2

Hence:

x = +-sqrt(-15/2+-(5sqrt(69))/2)

Note that sqrt(69) > sqrt(64) = 8, hence (5sqrt(69))/2 > 15/2

So we find 2 Real values of x and 2 non-Real Complex values of x.

So the solutions are:

(+-(sqrt(-15/2+(5sqrt(69))/2)), -5/2+sqrt(69)/2)

(+-(sqrt(15/2+(5sqrt(69))/2))i, -5/2-sqrt(69)/2)