How do you solve the system of linear equations: (a+2b)x+(2a-b)y=2(a+2b)x+(2ab)y=2 and (a-2b)x+(2a+b)y=3(a2b)x+(2a+b)y=3?

1 Answer
Sep 30, 2017

x=1/(2a)-1/(5b)x=12a15b and y=1/a+1/(10b)y=1a+110b

Explanation:

We have (a+2b)x+(2a-b)y=2(a+2b)x+(2ab)y=2 ...................(1)

(a-2b)x+(2a+b)y=3(a2b)x+(2a+b)y=3 ...................(2)

Adding the two we get 2ax+4ay=52ax+4ay=5 ...................(3)

and subtracting (2) from (1), we get

4bx-2by=-14bx2by=1 ...................(4)

Multiplying (3) by 2b2b and (4) by aa, we get

4abx+8aby=10b4abx+8aby=10b ...................(5)

and 4abx-2aby=-a4abx2aby=a ...................(6)

Subtracting (6) from (5), we have

10aby=10b+a10aby=10b+a or y=(10b+a)/(10ab)=1/a+1/(10b)y=10b+a10ab=1a+110b

Multipying (6) by 44 and adding to (5), we get

20abx=10b-4a20abx=10b4a or x=(10b-4a)/(20ab)=1/(2a)-1/(5b)x=10b4a20ab=12a15b