How do you solve the system 3x^2-5y^2+2y=453x25y2+2y=45 and y=2x+10y=2x+10?

1 Answer
Apr 22, 2018

Solution set is (-4.2,1.6)(4.2,1.6) and (-7.3,-4.6)(7.3,4.6)

Explanation:

To solve the system of equations 3x^2-5y^2+2y=453x25y2+2y=45 and y=2x+10y=2x+10, just substitute value of yy from latter equation in the former equation.

i.e. 3x^2-5(2x+10)^2+2(2x+10)=453x25(2x+10)2+2(2x+10)=45

or 3x^2-5(4x^2+40x+100)+4x+20=453x25(4x2+40x+100)+4x+20=45

or -17x^2-196x-525=017x2196x525=0 or 17x^2+196x+525=017x2+196x+525=0

Hence x=(-196+-sqrt(196^2-4*17*525))/34x=196±196241752534

= (-196+-sqrt(38416-35700))/34196±384163570034

= (-196+-sqrt2716)/34=(-196+-52.12)/34196±271634=196±52.1234

i.e. x=-4.2x=4.2 or -7.37.3

and y=2xx(-4.2)+10=1.6y=2×(4.2)+10=1.6 or y=2xx(-7.3)+10=-4.6y=2×(7.3)+10=4.6

and Solution set is (-4.2,1.6)(4.2,1.6) and (-7.3,-4.6)(7.3,4.6)

This is intersection of a hyperbola and line.

graph{(3x^2-5y^2+2y-45)(2x+10-y)=0 [-20, 20, -10, 10]}