How do you solve the system 16x^2-y^2+16y-128=016x2−y2+16y−128=0 and y^2-48x-16y-32=0y2−48x−16y−32=0?
1 Answer
Explanation:
If you add the two equations together, you get:
16x^2-48x-160 = 016x2−48x−160=0
Divide through by
x^2-3x-10 = 0x2−3x−10=0
Find a pair of factors of
0 = x^2-3x-10 = (x-5)(x+2)0=x2−3x−10=(x−5)(x+2)
Hence
Substituting
0 = y^2-16y-2720=y2−16y−272
= (y-8)^2-336=(y−8)2−336
= (y-8)^2-(4sqrt(21))^2=(y−8)2−(4√21)2
= (y-8-4sqrt(21))(y-8+4sqrt(21))=(y−8−4√21)(y−8+4√21)
So
Substituting
0 = y^2-16+64 = (y-8)^20=y2−16+64=(y−8)2
So
Thus the solutions are:
(x, y) = (5, 8+-4sqrt(21))(x,y)=(5,8±4√21) and(x, y) = (-2, 8)(x,y)=(−2,8)