How do you solve the system 16x^2-y^2+16y-128=016x2y2+16y128=0 and y^2-48x-16y-32=0y248x16y32=0?

1 Answer
Jul 27, 2016

(x, y) = (5, 8+-4sqrt(21))(x,y)=(5,8±421) or (x, y) = (-2, 8)(x,y)=(2,8)

Explanation:

If you add the two equations together, you get:

16x^2-48x-160 = 016x248x160=0

Divide through by 1616 to get:

x^2-3x-10 = 0x23x10=0

Find a pair of factors of 1010 which differ by 33. The pair 5, 25,2 works, so:

0 = x^2-3x-10 = (x-5)(x+2)0=x23x10=(x5)(x+2)

Hence x=5x=5 or x=-2x=2

color(white)()
Substituting x=5x=5 in the second equation we get:

0 = y^2-16y-2720=y216y272

= (y-8)^2-336=(y8)2336

= (y-8)^2-(4sqrt(21))^2=(y8)2(421)2

= (y-8-4sqrt(21))(y-8+4sqrt(21))=(y8421)(y8+421)

So y = 8 +-4sqrt(21)y=8±421

color(white)()
Substituting x=-2x=2 in the second equation we get:

0 = y^2-16+64 = (y-8)^20=y216+64=(y8)2

So y = 8y=8

Thus the solutions are:

(x, y) = (5, 8+-4sqrt(21))(x,y)=(5,8±421) and (x, y) = (-2, 8)(x,y)=(2,8)