How do you solve the quadratic with complex numbers given #x^4+16x^2-225=0#?
1 Answer
Nov 5, 2016
This quartic equation has roots
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this several times.
Given:
#x^4+16x^2-225 = 0#
This is a quartic in
#0 = x^4+16x^2-225#
#color(white)(0) = (x^2)^2+16(x^2)+64-289#
#color(white)(0) = (x^2+8)^2-17^2#
#color(white)(0) = ((x^2+8)-17)((x^2+8)+17)#
#color(white)(0) = (x^2-9)(x^2+25)#
#color(white)(0) = (x^2-3^2)(x^2-(5i)^2)#
#color(white)(0) = (x-3)(x+3)(x-5i)(x+5i)#
Hence roots:
#x = +-3# and#x = +-5i#