How do you solve the following system: x - 3y = -1 , 7x+15y=32 ?

1 Answer
May 8, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for x:

x - 3y = -1

x - 3y + color(red)(3y) = -1 + color(red)(3y)

x - 0 = -1 + 3y

x = -1 + 3y

Step 2) Substitute -1 + 3y for x in the second equation and solve for y:

7x + 15y = 32 becomes:

7(-1 + 3y) + 15y = 32

(7 * -1) + (7 * 3y) + 15y = 32

-7 + 21y + 15y = 32

-7 + (21 + 15)y = 32

-7 + 36y = 32

color(red)(7) - 7 + 36y = color(red)(7) + 32

0 + 36y = 39

36y = 39

(36y)/color(red)(36) = 39/color(red)(36)

(color(red)(cancel(color(black)(36)))y)/cancel(color(red)(36)) = (13 xx 3)/color(red)(12 xx 3)

y = (13 xx color(red)(cancel(color(black)(3))))/color(red)(12 xx color(black)(cancel(color(red)(3))))

y = 13/12

Step 3) Substitute 13/12 for y in the solution to the first equation at the end of Step 1 and calculate x:

x = -1 + 3y becomes:

x = -1 + (3 * 13/12)

x = -1 + 39/12

x = (12/12 * -1) + 39/12

x = -12/12 + 39/12

x = 27/12

x = (3 xx 9)/(3 xx 4)

x = (color(red)(cancel(color(black)(3))) xx 9)/(color(red)(cancel(color(black)(3))) xx 4)

x = 9/4

The solution is: x = 9/4 and y = 13/12 or (9/4, 13/12)