How do you solve the following system?: #61x -31y =-33 , -3x +7y = 8#
1 Answer
Explanation:
We have:
#{(61x-31y=-33" "" "" "" "" "mathbf(eq. 1)),(-3x+7y=8" "" "" "" "" "" "color(white)(sl)mathbf(eq. 2)):}#
We want to either cancel out the
#{:(color(white)"-.-"183x-93y=-99" "" "" "" "color(white)(sl)mathbf(eq. 1)xx3),(ul(-183x+427y=488" "+)" "" "color(white)(ss)mathbf(eq. 2)xx61),(color(white)("-------------")334y=389" "" "" "" "" "mathbf(eq. 3)):}#
From
#color(blue)(y=389/334#
We can now plug this value of
#-3x+7color(blue)y=8" "=>" "-3x+7(color(blue)(389/334))=8#
Solving this equation, we multiply
#-3x+2723/334=8#
#-3x=8-2723/334#
Find a common denominator.
#-3x=2672/334-2723/334#
#-3x=-51/334#
#x=-51/334(-1/3)#
The negatives will cancel, so
#color(red)(x=17/334#
Written as the ordered pair
#color(green)(|barul(color(white)(int^int)(x,y)=(17/334,389/334)color(white)(int^int)|))#