How do you solve the following system: -3x + y = -4, 6y + 4x = 12 ?

1 Answer
Aug 27, 2017

See a solution process below: (18/11, 10/11)

Explanation:

Step 1) Solve the first equation for y:

-3x + y = -4

color(red)(3x) - 3x + y = color(red)(3x) - 4

0 + y = 3x - 4

y = 3x - 4

Step 2) Substitute (3x - 4) for y in the second equation and solve for x:

6y + 4x = 12 becomes:

6(3x - 4) + 4x = 12

(6 * 3x) - (6 * 4) + 4x = 12

18x - 24 + 4x = 12

18x + 4x - 24 = 12

(18 + 4)x - 24 = 12

22x - 24 = 12

22x - 24 + color(red)(24) = 12 + color(red)(24)

22x - 0 = 36

22x = 36

(22x)/color(red)(22) = 36/color(red)(22)

(color(red)(cancel(color(black)(22)))x)/cancel(color(red)(22)) = (2 xx 18)/color(red)(2 xx 11)

x = (color(red)(cancel(color(black)(2))) xx 18)/color(red)(color(black)(cancel(color(red)(2))) xx 11)

x = 18/11

Step 3) Substitute 18/11 for x in the solution to the first equation at the end of Step 1 and calculate y:

y = 3x - 4 becomes:

y = (3 xx 18/11) - 4

y = 54/11 - 4

y = 54/11 - (11/11 xx 4)

y = 54/11 - 44/11

y = 10/11

The Solution Is: x = 18/11 and y = 10/11 or (18/11, 10/11)