How do you solve the following system: 3x-y=12, 3x+4y=-10 ?

1 Answer
May 29, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for y:

3x - y = 12

3x - y + color(red)(y) - color(blue)(12) = color(red)(y) + 12 - color(blue)(12)

3x cancel( - y + color(red)(y)) - 12 = y + cancel(12 - color(blue)(12))

3x - 12 = y

y = 3x - 12

Step 2) Substitute (3x - 12) for y in the second equation and solve for x:

3x + 4y = -10 becomes:

3x + 4(3x - 12) = -10

3x + (4 xx 3x) - (4 xx 12) = -10

3x + 12x - 48 = -10

(3 + 12)x - 48 = -10

15x - 48 = -10

15x - 48 + color(red)(48) = -10 + color(red)(48)

15x cancel(- 48 + color(red)(48)) = 38

15x = 38

15x/color(red)(15) = 38/color(red)(15)

color(red)(cancel(color(black)(15)))x/cancel(color(red)(15)) = 38/15

x = 38/15

Step 3) Substitute 38/15 for x in the solution to the first equation at the end of Step 1 and calculate y:

y = 3x - 12 becomes:

y = (3 xx 38/15) - 12

y = (color(red)(cancel(color(black)(3))) xx 38/(color(red)(cancel(color(black)(15)))5)) - 12

y = 38/5 - 12

y = 38/5 - (5/5 xx 12)

y = 38/5 - 60/5

y = -22/5

The solution is: x = 38/15 and y = -22/5 or (38/15, -22/5)