How do you solve the following system: 3x – 5y = 53 , 4x+y=10 ?

1 Answer
May 1, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for y:

4x + y = 10

-color(red)(4x) + 4x + y = -color(red)(4x) + 10

0 + y = -4x + 10

y = -4x + 10

Step 2) Substitute -4x + 10 for y in the first equation and solve for x:

3x - 5y = 53 becomes:

3x - 5(-4x + 10) = 53

3x - (5 * -4x) - (5 * 10) = 53

3x - (-20x) - 50 = 53

3x + 20x - 50 = 53

23x - 50 = 53

23x - 50 + color(red)(50) = 53 + color(red)(50)

23x - 0 = 103

23x = 103

(23x)/color(red)(23) = 103/color(red)(23)

(color(red)(cancel(color(black)(23)))x)/cancel(color(red)(23)) = 103/23

x = 103/23

Step 3) Substitute 103/23 for x in the solution to the second equation at the end of Step 1 and calculate y

y = -4x + 10 becomes:

y = (-4 * 103/23) + 10

y = -412/23 + (10 * 23/23)

y = -412/23 + 230/23

y = -182/23

The solution is: x = 103/23 and y = -182/23