Step 1) Solve the second equation for #y#:
#4x + y = 10#
#-color(red)(4x) + 4x + y = -color(red)(4x) + 10#
#0 + y = -4x + 10#
#y = -4x + 10#
Step 2) Substitute #-4x + 10# for #y# in the first equation and solve for #x#:
#3x - 5y = 53# becomes:
#3x - 5(-4x + 10) = 53#
#3x - (5 * -4x) - (5 * 10) = 53#
#3x - (-20x) - 50 = 53#
#3x + 20x - 50 = 53#
#23x - 50 = 53#
#23x - 50 + color(red)(50) = 53 + color(red)(50)#
#23x - 0 = 103#
#23x = 103#
#(23x)/color(red)(23) = 103/color(red)(23)#
#(color(red)(cancel(color(black)(23)))x)/cancel(color(red)(23)) = 103/23#
#x = 103/23#
Step 3) Substitute #103/23# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#
#y = -4x + 10# becomes:
#y = (-4 * 103/23) + 10#
#y = -412/23 + (10 * 23/23)#
#y = -412/23 + 230/23#
#y = -182/23#
The solution is: #x = 103/23# and #y = -182/23#