How do you solve the following system: 3x+5y=5 , 4x+y=10 3x+5y=5,4x+y=10?

1 Answer
Jan 23, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for yy:

4x + y - color(red)(4x) = 10 - color(red)(4x)4x+y4x=104x

4x - color(red)(4x) + y = 10 - color(red)(4x)4x4x+y=104x

0 + y = 10 - 4x0+y=104x

y = 10 - 4xy=104x

Step 2) Substitute color(red)(10 - 4x)104x for yy in the first equation and solve for xx:

3x + 5(10 - 4x) = 53x+5(104x)=5

3x + 50 - 20x = 53x+5020x=5

3x - 20x + 50 = 53x20x+50=5

-17x + 50 = 517x+50=5

-17x + 50 + color(red)(17x) - color(blue)(5) = 5 + color(red)(17x) - color(blue)(5)17x+50+17x5=5+17x5

-17x + color(red)(17x) + 50 - color(blue)(5) = 5 - color(blue)(5) + color(red)(17x)17x+17x+505=55+17x

0 + 50 - 5 = 0 + 17x0+505=0+17x

45 = 17x45=17x

45/color(red)(17) = (17x)/color(red)(17)4517=17x17

45/17 = (color(red)(cancel(color(black)(17)))x)/cancel(color(red)(17))

45/17 = x

x = 45/17

Step 3) Substitute color(red)(45/17) for x in the solution to the second equation at the end of Step 1:

y = 10 - (4 xx 45/17)

y = (17/17 xx 10) - (180/17)

y = 170/17 - 180/17

y = -10/17

The solution is: x = 45/17, y = -10/17 or (45/17, -10/17)