How do you solve the following system?: 3x +11y =-4, -9x +5y = 23x+11y=4,9x+5y=2

1 Answer
Jan 26, 2016

(x,y)=(-7/19,-5/19)(x,y)=(719,519)

Explanation:

Solve by elimination:-

3x+11y=-4,-9x+5y=23x+11y=4,9x+5y=2

It is possible to eliminate -9x9x by 3x3x if we multiply 3x3x by 33 to get 9x9x

rarr3(3x+11y=-4)3(3x+11y=4)

rarr9x+33y=-129x+33y=12

Now add both of the equations:-

rarr(-9x+5y=2)+(9x+33y=-12)=(38y=-10)(9x+5y=2)+(9x+33y=12)=(38y=10)

rarr38y=-1038y=10

rarry=-10/38=-5/19y=1038=519

Now substitute the value of y to the first equation:-

rarr-9x+5(-5/19)=29x+5(519)=2

rarr-9x-25/19=29x2519=2

rarr-9x=2+25/19=63/199x=2+2519=6319

rarrx=63/19-:(-9)=63/19*(-1/9)=-63/171=-7/19x=6319÷(9)=6319(19)=63171=719

So,(x,y)=(-7/19,-5/19)(x,y)=(719,519)