How do you solve the following system?: 2x -9y =5, x -2y = -52x9y=5,x2y=5

1 Answer
May 25, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for xx:

x - 2y = -5x2y=5

x - 2y + color(red)(2y) = -5 + color(red)(2y)x2y+2y=5+2y

x - 0 = -5 + 2yx0=5+2y

x = -5 + 2yx=5+2y

Step 2) Substitute (-5 + 2y)(5+2y) for xx in the first equation and solve for yy:

2x - 9y = 52x9y=5 becomes:

2(-5 + 2y) - 9y = 52(5+2y)9y=5

(2 * -5) + (2 * 2y) - 9y = 5(25)+(22y)9y=5

-10 + 4y - 9y = 510+4y9y=5

-10 + (4 - 9)y = 510+(49)y=5

-10 + (-5)y = 510+(5)y=5

-10 - 5y = 5105y=5

color(red)(10) - 10 - 5y = color(red)(10) + 510105y=10+5

0 - 5y = 1505y=15

-5y = 155y=15

(-5y)/color(red)(-5) = 15/color(red)(-5)5y5=155

(color(red)(cancel(color(black)(-5)))y)/cancel(color(red)(-5)) = -3

y = -3

Step 3) Substitute -3 for y in the solution to the second equation at the end of Step 1 and calculate x:

x = -5 + 2y becomes:

x = -5 + (2 * -3)

x = -5 + (-6)

x = -11

The solution is: x = -11 and y = -3 or (-11, -3)