How do you solve the following system?: -29x +53y =-26 , 45x +26y = -129x+53y=26,45x+26y=1

1 Answer
Feb 28, 2016

x= 623/3139x=6233139 & y=-1199/3139y=11993139

Explanation:

-29x+53y=-2629x+53y=26-----------------------------------------(1)
45x+26y = -145x+26y=1 ------------------------------------------(2)

Comparing with a_1+b_1=c_1a1+b1=c1 and a_2+b_2=c_2a2+b2=c2

We get,
a_1 =-29 ; b_1=53 ; c_1=-26a1=29;b1=53;c1=26
a_2=45; b_2=26= c_2 = -1a2=45;b2=26=c2=1

D =(a_1b_2)-(a_2b_1)D=(a1b2)(a2b1)
D= (-29xx26) - ( 45xx53)D=(29×26)(45×53)
D= (-754) - (2385)D=(754)(2385)
D= -3139D=3139

D_x = (c_1b_2)-(c_2b_1)Dx=(c1b2)(c2b1)
D_x = (-26xx26)-(-1xx53)Dx=(26×26)(1×53)
D_x = (-676)-(-53)Dx=(676)(53)
D_x = -676+53Dx=676+53
D_x = -623Dx=623

D_y=(a_1c_2)-(a_2c_1)Dy=(a1c2)(a2c1)
D_y=(-29xx-1)-(45xx-26)Dy=(29×1)(45×26)
D_y=(29)-(-1170)Dy=(29)(1170)
D_y=29+1170Dy=29+1170
D_y=1199Dy=1199

By Cramer's Rule

x= D_x/Dx=DxD

x=(-623)/-3139x=6233139

x= 623/3139x=6233139

y=D_y/Dy=DyD

y=1199/-3139y=11993139

y=-1199/3139y=11993139