How do you solve the following system?

a_1x_1+a_2x_2+a_3=0, a_4x_1+a_5x_2+a_6=0

1 Answer
Jun 21, 2018

(x_1,x_2)=((a_2a_6-a_3a_5)/(a_1a_5-a_2a_4) , (a_3a_4-a_1a_6)/(a_1a_5-a_2a_4))

Explanation:

Here,

a_1x_1+a_2x_2=-a_3...to(1),where, a_1,a_2,a_3 inRR

a_4x_1+a_5x_2=-a_6...to(2) ,where ,a_4,a_5,a_6 in RR

"using "color(blue)"Cramer's Rule" "to solve the system :"

First we find determinants : D ,D_x and D_y

enter image source here
"Cramer's Rule :"

x_1=(D_x)/D =(a_2a_6-a_3a_5)/(a_1a_5-a_2a_4) ,where, a_1a_5-a_2a_4!=0

x_2=(D_y)/D =(a_3a_4-a_1a_6)/(a_1a_5-a_2a_4) , where, a_1a_5-a_2a_4!=0

Hence, the solution of system is :

(x_1,x_2)=((a_2a_6-a_3a_5)/(a_1a_5-a_2a_4) , (a_3a_4-a_1a_6)/(a_1a_5-a_2a_4)),

where, a_1a_5-a_2a_4!=0