color(brown)("You will get used to this and be able to do simple ones in your head")
Given:
x=1-y...........................................(1)
x-y=5..........................................(2)
In each case make y the dependant variable (answer) then equate to each other through y to find x
color(blue)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
color(red)("For (1)")
Add y to both sides giving:
x+y=1-y+ycolor(white)(xxx) "Note that" -y +y=0 " so disappears!"
x+y=1
Subtract x from both sides
x-x+y=1-x
y=1-x..................................(1_a)
color(blue)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
color(red)("For (2)")
Add y to both sides giving:
x-y+y=5+y
x=5+y
Subtract 5 from bot sides giving:
x-5 = 5-5+y
x-5=y
Reverse so that y is on the left
y=x-5.......................................(2_a)
color(blue)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
"Equation "(1_a) = color(blue)(y) = "Equation "(2_a)
color(brown)(1-x)=color(blue)(y)=color(brown)(x-5)
color(brown)(1-x)=color(brown)(x-5)
Add x to both sides
1-x+x=x+x-5
1=2x-5
Add 5 to both sides
1+5=2x-5+5
2x=6
color(brown)(underline("DIVIDE")) BOTH SIDES BY 2
2/2x=6/2
color(blue)(x=3)
color(blue)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
Using the methods I have shown you first substitute x=3 in equations #(1_a) "or " (2_a) then manipulate to find y