How do you solve the following linear system: 3x + y = 4 , x = 5y + 2 3x+y=4,x=5y+2?

1 Answer
Jun 27, 2018

See a solution process below:

Explanation:

Step 1) Because the second equation is already solved for xx we can substitute (5y + 2)(5y+2) for xx in the first equation and solve for yy:

3x + y = 43x+y=4 becomes:

3(5y + 2) + y = 43(5y+2)+y=4

(3 xx 5y) + (3 xx 2) + y = 4(3×5y)+(3×2)+y=4

15y + 6 + y = 415y+6+y=4

15y + 6 - color(red)(6) + y = 4 - color(red)(6)15y+66+y=46

15y + 0 + y = -215y+0+y=2

15y + y = -215y+y=2

15y + 1y = -215y+1y=2

(15 + 1)y = -2(15+1)y=2

16y = -216y=2

(16y)/color(red)(16) = -2/color(red)(16)16y16=216

(color(red)(cancel(color(black)(16)))y)/cancel(color(red)(16)) = -2/16

y = -1/8

Step 2) Substitute -1/8 for y in the second equation and calculate x:

x = 5y + 2 becomes:

x = (5 xx -1/8) + 2

x = -5/8 + (8/8 xx 2)

x = -5/8 + 16/8

x = (-5 + 16)/8

x = 11/8

The Solution Is:

x = 11/8 and y = -1/8

Or

(11/8, -1/8)