How do you solve the following equation tan^2 x = 1/3 tan2x=13 in the interval [0, 2pi]?

1 Answer
Oct 31, 2016

pi/6, (5pi)/6, (7pi)/6, (11pi)/6π6,5π6,7π6,11π6

Explanation:

tan^2 x = 1/3tan2x=13
tan x = +- 1/sqrt3 = +- sqrt3/3tanx=±13=±33
Use unit circle and trig table -->
a. tan x = sqrt3/3tanx=33 --> x = pi/6x=π6, and x = pi/6 + pi = (7pi)/6x=π6+π=7π6
b. tan x = -sqrt3/3tanx=33 --> x = (5pi)/6x=5π6 and x = (5pi)/6 + pi = (11pi)/6x=5π6+π=11π6

Answers for (0, 2pi)(0,2π):
pi/6, (5pi)/6, (7pi)/6, (11pi)/6π6,5π6,7π6,11π6