How do you solve the following equation sin x cos x= 1/2 in the interval [0, 2pi]?

1 Answer
Oct 4, 2016

S={pi/6, pi/3,(5pi)/6,(5pi)/3}

Explanation:

sinxcosx=1/2

sinx = 1/2, cosx=1/2

x=sin^-1(1/2) OR x=cos^-1(1/2)

x=pi/6 +2pin, x=(5pi)/6+2pin OR x=+-pi/3 +2pin

n=0, x=pi/6,(5pi)/6, pi/3,-pi/3

n=1, x=(13pi)/6, (17pi)/6,(7pi)/3,(5pi)/3

S={pi/6, pi/3,(5pi)/6,(5pi)/3}