How do you solve the following equation 6cos^2x = 19sinx + 166cos2x=19sinx+16 in the interval [0, 2pi]?

1 Answer
Jul 3, 2016

x=(180^o)+41^o49'=221^o49' in QIII
Q IV, x=(360^o)-(41^o49')=318^o11',

Explanation:

6cos^2x=19sinx+16
rArr 6(1-sin^2x)=19sinx+16
rArr 6sin^2x+19sinx+10=0
rArr 6sin^2x+15sinx+4sinx+10=0
rArr 3sinx(2sinx+5)+2(2sinx+5)=0
rArr (2sinx+5)(3sinx+2)=0
rArr sinx =-5/2, impossible , as, sinx in [-1,1], sinx=-2/3
sinx =-2/3 ~= -0.6667 = -sin(41^o49')

Since sinx<0 and, x in [0,2pi], x lies in Quadrant III, IV.

Accordingly, x=(180^o)+41^o49'=221^o49' in QIII
For Q IV, x=(360^o)-(41^o49')=318^o11',