How do you solve the equation on the interval [0,2pi) for |tan(t)|=1/sqrt(3)?

1 Answer
Jun 29, 2016

pi/3, (2pi)/3, (4pi)/3 and (5pi)/3

Explanation:

|tan theta|=1/sqrt 3 is the combined equation for the pair

tan theta = 1/sqrt 3 and tan theta = -1/sqrt 3

The principal values of theta are +-pi/3.

The general values are npi+pi/3, n= 0, +-1, +-2,... and

npi-pi/3, n= 0, +-1, +-2,...

In (0, 2pi), the first gives #pi/3 (n=0) and (4pi)/3(n=1).

In (0, 2pi), the second gives #2pi/3 (n=1) and (5pi)/3(n=21).