How do you solve the equation on the interval [0,2pi) for 2(cos(t))^2-cos(t)-1=0 ?

1 Answer
Jul 14, 2016

0, (2pi)/3, (4pi)/3, 2pi

Explanation:

Solve: 2cos^2 t - cos t - 1 = 0 for cos t.
Since a + b + c = 0, use shortcut. The 2 real roots are: cos t = 1 and cos t = c/a = - 1/2.
a. cos t = 1 --> t = 0 or t = 2pi
b. cos t = - 1/2
Trig table and unit circle -->
cos t = - 1/2 --> t = +- (2pi)/3
Arc (4pi)/3 is co-terminal to arc (-2pi/3).
Answer for (0, 2pi):
0, (2pi)/3, (4pi)/3, 2pi