How do you solve the equation 2cos^2theta-3costheta+1=02cos2θ3cosθ+1=0 for 0<=theta<2pi0θ<2π?

1 Answer
Nov 21, 2016

The solutions are S={0,pi/3,(5pi)/3} S={0,π3,5π3}

Explanation:

Let's factorise the LHS

2cos^2theta-3costheta+1=(2costheta-1)(costheta-1)=02cos2θ3cosθ+1=(2cosθ1)(cosθ1)=0

Therefore, 2costheta-1=02cosθ1=0

costheta=1/2cosθ=12

and costheta-1=0cosθ1=0

cos theta=1cosθ=1

We are looking for theta in [0, 2pi[θ[0,2π[

When costheta=1/2cosθ=12

theta=pi/3 , (5pi)/3θ=π3,5π3

When costheta=1cosθ=1

theta=0θ=0