How do you solve tanx/cosx=2?

1 Answer

x=sin^-1((-1+sqrt(17))/4)

Explanation:

Since tan x=sinx/cosx, you can substitute:

tanx/cosx=(sinx/cosx)/cosx=sinx/cos^2x

Since cos^2x=1-sin^2x, the given equation becomes:

sinx/(1-sin^2x)=2

It is equivalent to:

sinx=2(1-sin^2x) and cosx!=0

2sin^2x+sinx-2=0 and x!=pi/2+kpi

sinx=(-1+-sqrt(1+16))/4

  • Case when sin x < -1 can be dropped:

the solution

sinx=(-1-sqrt(17))/4<-1

the range of sin x is [-1;1] therefore

  • The solution is

sinx=(-1+sqrt(17))/4

x=sin^-1((-1+sqrt(17))/4)