How do you solve Tan(x+pi)=-2sin(x+pi)?

2 Answers

Remember that

tan(x+pi)=[tanx+tanpi]/[1-tanx*tanpi]

But tanpi=0 hence

tan(x+pi)=tanx

Also

sin(x+pi)=sinx*cospi+cosx*sin(pi)=-sinx

So now we have that

tan(x+pi)=-2sin(x+pi)=>tanx=2sinx=> sinx(1/cosx-2)=0

Hence we have that sinx=0=>x=k*pi where k an integer

Also cosx=1/2=>x=2*n*pi+-pi/3 where n an integer

But we have to exclude the values for which cosx=0

hence

x!=m*pi-pi/2 where m is an integer.

Hence the solutions are {k*pi,2*n*pi+-pi/3} except values at

{m*pi-pi/2}

Mar 14, 2016

0, pi/3, pi, (5pi)/3

Explanation:

Call (x + pi) = a, we get:
sin a/(cos a) = -2sin a
sin a = -2sin a.cos a
sin a(1 + 2cos a) = 0
a. sin a = 0 --> a = 0, and a = pi, and a = 2pi.
Therefor, x = -pi, and x = 0, and x = pi -->
x = 0 and x = pi for (0, 2pi)
b. 1 + 2cos a = 0 --> cos a = -1/2 -->arc a = +- (2pi)/3.
1. (x + pi) = (2pi)/3 --> x = (2pi)/3 - pi = - pi/3, or x = (5pi)/3.
2. (x + pi) = -(2pi)/3
x = -(2pi)/3 - pi = -(5pi)/3, or x = pi/3
Answer for (0, 2pi):
0, pi/3, pi, and (5pi)/3.
Check.
x = pi/3 --> tan (pi/3 + pi) = tan pi/3 = sqrt3;
- 2sin (pi/3 + pi) = 2sin pi/3 = (2sqrt3)/2 = sqrt3. OK