How do you solve tan(x/2)=cscx-cotx?

1 Answer
Sep 24, 2016

See the Proof given in Explanation Section.

Explanation:

"The R.H.S.="cscx-cotx

=1/sinx-cosx/sinx

=(1-cosx)/sinx

Here, we use the following Identities :

1-cosx=2sin^2(x/2), and, sinx=2sin(x/2)cos(x/2). Hence,

"The R.H.S.="(2sin^2(x/2))/(2sin(x/2)cos(x/2))

=sin(x/2)/cos(x/2)

=tan(x/2)

"=The L.H.S."