How do you solve tan^2x+4=2sec^2x+tanx in the interval [0,360]?

1 Answer
Nov 5, 2016

Use the identity sec^2theta = 1 + tan^2theta.

tan^2x + 4 = 2(1 + tan^2x) + tanx

tan^2x + 4 = 2 + 2tan^2x + tanx

0 = tan^2x + tanx - 2

0 = tan^2x + 2tanx - tanx - 2

0 = tanx(tanx + 2) - 1(tanx + 2)

0 = (tanx - 1)(tanx + 2)

tanx = -2 and tanx = 1

x = 180˚ - arctan(2), 360˚- arctan(2), 45˚, 225˚

Hopefully this helps!