How do you solve Tan^2(x)-|Sec(x)|=1 tan2(x)|sec(x)|=1?

1 Answer
Nov 30, 2016

x= 2kpi+-pi/3x=2kπ±π3 and

x= 2kpi+-2/3pi, k = 0, +-1, +-2, +-3, ..x=2kπ±23π,k=0,±1,±2,±3,..

Explanation:

|sec x| >=0|secx|0.

As tan^2x = sec^2x-1 =|sec x|^2-1. tan2x=sec2x1=|secx|21.

the given equation becomes a quadratic in |sec x||secx|.

|sec x|^2-|sec x|-2=(|sec x|-2)(|xec x|+1)=0|secx|2|secx|2=(|secx|2)(|xecx|+1)=0.

So, |sec x|=2 to sec x = +- 2|secx|=2secx=±2

sec^(-1)(+-2)= pi/3 and 2/3pisec1(±2)=π3and23π.. And so,

x= 2kpi+-pi/3x=2kπ±π3 and

x= 2kpi+-2/3pi, k = 0, +-1, +-2, +-3, ..x=2kπ±23π,k=0,±1,±2,±3,..