Firstly know that:
#sqrt(a)sqrt(b)=sqrt(ab)#
And also that:
#sqrt(q)sqrt(q)=q#
Knowing this, let's find the value of x...
#sqrt(x+3)-sqrt(x-1)=1#
#(sqrt(x+3)-sqrt(x-1))^2=1^2#
#(sqrt(x+3)-sqrt(x-1))(sqrt(x+3)-sqrt(x-1))=1#
#x+3-sqrt(x+3)sqrt(x-1)-sqrt(x+3)sqrt(x-1)+(x-1)=1#
#x+3-2sqrt(x+3)sqrt(x-1)+x-1=1#
#2x+2-2sqrt(x+3)sqrt(x-1)=1#
#2(x+1-sqrt(x+3)sqrt(x-1))=1#
#x+1-sqrt(x+3)sqrt(x-1)=1/2#
#x+1-1/2=sqrt((x+3)(x-1))#
#x+1/2=sqrt((x+3)(x-1))#
#(x+1/2)^2=(x+3)(x-1)#
#x^2+1/2x+1/2x+1/4=x^2-x+3x-3#
#x^2+x+1/4=x^2+2x-3#
#x^2-x^2+1/4+3=2x-x#
#:. x=3+1/4#