Given: -sqrt(3) cos x + sin x = - sqrt(3)
Rearrange: " "sqrt(3) - sqrt(3) cos x + sin x = 0
When we think of sqrt(3) in terms of cosine, realize cos(pi/6) = sqrt(3)/2
Group the second two terms and multiply and divide both terms by 2/2:
sqrt(3) - 2((sqrt(3))/2 cos x - 1/2sin x) = 0
Substitute in cos (pi/6) " for " sqrt(3)/2 " and " sin (pi/6) " for " 1/2:
sqrt(3) - 2(cos (pi/6) cos x - sin (pi/6) * sin x) = 0
Realize that " "cos(x + pi/6) = cos (pi/6) cos x - sin (pi/6) * sin x
sqrt(3) - 2cos(x + pi/6) = 0
- 2cos(x + pi/6) = -sqrt(3)
cos(x + pi/6) = sqrt(3)/2
Take the inverse cosine of both sides:
cos^-1(cos(x + pi/6)) = cos^-1(sqrt(3)/2)
x + pi/6 = 2 pi n + pi/6
and x + pi/6 = 2 pi n + (11 pi)/6
Simplify:
x = 2 pi n " and " x = 2 pi n +(10 pi/6) = 2 pi n + (5 pi)/3