How do you solve #sqrt(2x+4)+sqrt(3x-5)=4#?

1 Answer
Sep 6, 2017

Given: #sqrt(2x+4)+sqrt(3x-5)=4" [1]"#

If we mulitply both sides by the conjugate, #sqrt(2x+4)-sqrt(3x-5)#, it will eliminate the radicals from the left side:

#2x+4-(3x-5)=4(sqrt(2x+4)-sqrt(3x-5))" [2]"#

Combine like terms and distribute the 4:

#9-x=4sqrt(2x+4)-4sqrt(3x-5)" [3]"#

Flip equation [3]:

#4sqrt(2x+4)-4sqrt(3x-5)= 9-x" [4]"#

Multiply both sides of equation [1] by 4:

#4sqrt(2x+4)+4sqrt(3x-5)=16" [5]"#

We can make the term #4sqrt(3x-5)# disappear by adding equation [4] to equation [5]:

#8sqrt(2x+4)=25-x" [6]"#

Square both sides:

#64(2x+4) = x^2 - 50x + 625#

Distribute the 64:

#128x+256 = x^2 - 50x + 625#

Combine like terms:

#x^2 - 178x + 369=0#

Using the quadratic formula:

#x = 89-8sqrt(118)# and #x=89+8sqrt(118)#

Check both:

#sqrt(2(89-8sqrt(118))+4)+sqrt(3(89-8sqrt(118))-5)=4#

#4 = 4#

#sqrt(2(89+8sqrt(118))+4)+sqrt(3(89+8sqrt(118))-5)=4#

#41.71!=4#

We must discard the second root; the only solution is:

#x = 89-8sqrt(118)#