How do you solve sqrt(10–x)+x=8?

1 Answer
Mar 5, 2016

x=9,6

Explanation:

sqrt(10-x)+x=8

rarrsqrt(10-x)=8-x

Square both sides in order to get rid of the radical sign

rarr(sqrt(10-x))^2=(8-x)^2

Use the formula (a-b)^2=a^2-2ab+b^2

rarr10-x=64-16x+x^2

rarr10=64-16x+x^2+x

rarr10=64-15x+x^2

rarr0=64-15x+x^2-10

rarr0=54-15x+x^2

Rewrite

rarrx^2-15x+54=0

Factor the equation

rarr(x-9)(x-6)=0

If we solve for it we get x=9,6

But,

If we take the value of 9 of x into the equation,

sqrt(10-9)+9=0

sqrt1+9=0

1+9!=0

We should take sqrt1 as -sqrt1

Hope! I had given the right answer!