How do you solve sinx-tanx=0sinxtanx=0 from [0,2pi]?

1 Answer
Jul 27, 2015

I found: x=0,pi,2pix=0,π,2π

Explanation:

Write it as:
sin(x)-sin(x)/cos(x)=0sin(x)sin(x)cos(x)=0 collect sin(x)sin(x)
sin(x)[1-1/cos(x)]=0sin(x)[11cos(x)]=0
So you get:
sin(x)=0sin(x)=0 for x=0, pi, 2pix=0,π,2π
1-1/cos(x)=011cos(x)=0 or cos(x)=1cos(x)=1 for x=0, 2pix=0,2π