How do you solve sinx=sqrt2/2?

1 Answer
Mar 16, 2018

x = (2npi + pi/4) or (2npi + (3pi)/4) , n -> epsilon -> ZZ

Explanation:

Given sin x = (sqrt2/2)

We know 2 = (sqrt2)^2 = sqrt 2 * sqrt 2 #

:. sin x = sin sqrt 2 / 2 = cancelsqrt 2 / (cancel sqrt 2 * sqrt 2) = 1/sqrt 2

enter image source here

From the above table,
sin (pi/4) = (sin pi - (pi/4)) = sin ((3pi)/4) = 1/sqrt2

x = (pi/4)^c or 45^@, (3pi) / )^c or 135^@#

Generalizing the same,

x = (2npi + pi/4) or (2npi + (3pi)/4) , n -> epsilon -> ZZ