As sinx=-cosxsinx=−cosx, we have
sinx+cosx=0sinx+cosx=0
or sinx/sqrt2+cosx/sqrt2=0sinx√2+cosx√2=0
or sinxcos(pi/4)+cosxsin(pi/4)=0sinxcos(π4)+cosxsin(π4)=0
or sin(x+pi/4)=0sin(x+π4)=0=sin0#
or sin(x+pi/4)=sin0sin(x+π4)=sin0 or sinpisinπ or sin2pisin2π
Hence possible values of xx in the interval 0<=x<=2pi0≤x≤2π is
x=pi-pi/4=(3pi)/4x=π−π4=3π4 or x=2pi-pi/4=(7pi)/4x=2π−π4=7π4
Alternatively sinx=-cosx=>tanx=-1sinx=−cosx⇒tanx=−1
i.e. x=(3pi)/4x=3π4 or (7pi)/47π4
An easier way could be that as sinx=-cosxsinx=−cosx
sinx/cosx=-1sinxcosx=−1 or tanx=tan(-pi/4)tanx=tan(−π4)
and as tan ratio has a cylce of piπ
x={-pi/4,(3pi)/4,(7pi)/4,......} and possible values of x in the interval 0<=x<=2pi are (3pi)/4 and (7pi)/4.