How do you solve sinx=-cosxsinx=cosx in the interval 0<=x<=2pi0x2π?

1 Answer
Mar 7, 2018

x=(3pi)/4x=3π4 or (7pi)/47π4

Explanation:

As sinx=-cosxsinx=cosx, we have

sinx+cosx=0sinx+cosx=0

or sinx/sqrt2+cosx/sqrt2=0sinx2+cosx2=0

or sinxcos(pi/4)+cosxsin(pi/4)=0sinxcos(π4)+cosxsin(π4)=0

or sin(x+pi/4)=0sin(x+π4)=0=sin0#

or sin(x+pi/4)=sin0sin(x+π4)=sin0 or sinpisinπ or sin2pisin2π

Hence possible values of xx in the interval 0<=x<=2pi0x2π is

x=pi-pi/4=(3pi)/4x=ππ4=3π4 or x=2pi-pi/4=(7pi)/4x=2ππ4=7π4

Alternatively sinx=-cosx=>tanx=-1sinx=cosxtanx=1

i.e. x=(3pi)/4x=3π4 or (7pi)/47π4

An easier way could be that as sinx=-cosxsinx=cosx

sinx/cosx=-1sinxcosx=1 or tanx=tan(-pi/4)tanx=tan(π4)

and as tan ratio has a cylce of piπ

x={-pi/4,(3pi)/4,(7pi)/4,......} and possible values of x in the interval 0<=x<=2pi are (3pi)/4 and (7pi)/4.